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General probabilistic approach to the problem of 
irreversible stochastic transitions 
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N. N. Semenov InstiNte of Chemical Physics, Russian Academy of Sciences, ul. 
Kossygina 4, Moscow 117334, Russia 

Received 27 January 1993, in 6nal form 21 May 1593 

Abstract. The consideration of irreversible stochastic transitions (IST) in complex stochas- 
tic systems based on the most general probabilistic formalism is performed. The key 
quantity, transition probability per unit time, a, is strictly introduced without referring to 
the conventional approach to the IST description. The expressions obtained for transition 
probabilities and average transition expectation time, (r), allow one to take into account 
the influence of interactions between objects undergoing IST and external impacts on 
probabilities of transitions. The violation of mmmon postulates a=l/(r)=constant, as 
well as of the simple exponential kinetic law for A+B transitions, is demonstrated. These 
postulates are shown to follow from the general consideration performed as a special 
particular case. The, evaluation of statistical characteristics of various wmplex systems 
containing objects undergoihg LW by means of the approach developed isdemonstrated on 
two model problems. 

1. htrduction 

Various physical’ problems concern systems containing objects (atoms, molecules, 
radicals and other species) undergoing irreversible transitions with random expec- 
tation time from a state A to a state B .  The most common, ‘classical‘ description of 
such irreversible stochastic transitions (IST) is based on two major assumptions. 

First, for a single object undergoing the A+B transition, the waiting (expec- 
tation) time distribution is supposed to be exponential with the average waiting time, 
(z), being a constant and independent of the observation startout moment, r,,. Such an 
assumption is mathematically evident when one deals with the A+B process which is 
Markovian in terms of the waiting times. 

Second, identical objects are supposed to have equal (r)  values throughout the 
system. Thus it is a priori assumed that the average expectation time is a given 
constant characterizing the ‘reactive system’ (Benson 1960, Bharuch-Reid 1960, 
Goldanskii er al. 1962, Kondratiev and Nikitin 1974, Levine and Bemstein 1987 and 
references therein). In more complicated cases (e.g. complex and multichannel 
reaction mechanisms, processes in multicomponent systems, etc.) one usually defines 
the set of constants (z); (i= 1,2, . . . ,%) being also identical for all objects of the type i 
(Benson 1960, Goldanskiid al. 1962). 

Such an approach leads to the exponential evolutionary (kinetic) law, i.e. the law 
described by an exponential function versus time or (for processes with several (z)i) by 
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a superposition of such functions (Karlin 1968, Feller 1970, Rozanov 1979 and 
references cited above). 

The conventional assumptions mentioned above and the resulting evolutionary 
law seem particularly reasonable for monomolecular processes. However, numerous 
experimental data obtained for condensed media (F'lonka 1986) and complex bioche- 
mical objects (Berlin et al. 1992, Frauenfelder et al. 1991) provide kinetic curves which 
cannot be convincingly interpreted using the set of constants describing the reaction 
rate. This difficulty always appears when one deals with monomolecular processes 
proceeding under certain external-with respect to the very A+ B transition- 
affections. 

To overcome the discrepancy between theory and experimental data, several 
approaches have been proposed (Mikhailov 1972, Agmon and Hopfield 1983, 
Goldanskii and Kozhushner 1984, Plonka 1986,1988,1989, Frauenfelder et al. 1991, 
Sumi 1991, Berlin et al. 1990, 1991, 1992, and references therein). For instance, 
kinetic laws are constructed by using time-dependent rate 'constants' (Plonka 1986, 
1988, 1989, Frauenfelder et al.'1991, Berlin et al. 1990,1991,1992) introduced on the 
basis of the relaxation (Plonka 1986, Berlin et al. 1992, Frauenfelder et al. 1991) or 
polychromacity concept (Mikhailov 1972, Goldanskii and Kozhushner 1984). Another 
group of models (Agmon and Hopfield 1983, Sumi 1991) treats external effects by the 
method of the 'diffusion perpendicular to the reaction coordinate' (Agmon and 
Hopfield 1983). 

However, all these approaches are based on some qualitative assumptions being 
distinct for different reaction systems and mechanisms. In addition, they include 
various mathematical constraints and limitations restricting their applicability. Thus 
the problem of the general description of IST arises. 

Leaving the detailed comparison of the above-mentioned methods for a separate 
paper, in the present work we carry out a consideration of ISI based on the most 
general probabilistic formalism. Such a consideration does not use the propositions 
mentioned above and provides means to treat the general IST situation regardless of 
the nature of objects and their environment. From the mathematical point of view, 
the present consideration does not use assumptions concerning Markovian or non- 
Markovian, stationary or non-stationary characteristics of the transition process. This 
advantage makes the proposed theory different from those mentioned above and free 
from the necessity to introduce special 'memory' terms into the description of IST in 
the case when the process is non-Markovian. 

The origin of the main mathematical quantity of the problem-the transition 
probability per unit time, a-is considered in section 2. In the following section we 
investigate properties of a using the most general assumptions and derive expressions 
for a and (r) .  These results are used in section 4 to show how the description of the 
entire system with elements undergoing transition A+B can be performed in the 
general case. Two important particular situations are considered in detail, i.e. a 
system with a set of deterministic parameters affecting IST and a system with a set of 
stochastic parameters. The main conclusions following from our investigation are 
su"arized,in section 5. 

Y A Berlin et a1 

2. Transition probab+ty per unit time 

Here we consider the simplest case when, at t = O ,  the system contains N identical 
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objects undergoing IST A+B. The extension to more-complicated cases including, for 
example, several types of objects and a large number of states, is straightforward. We 
assume that states A and B differ in some parameter (or the set of parametep), so that 
the transition A+ B is defined as the change of this particular parameter. Changes in 
all other parameters do not refer to the transition between states in the above- 
mentioned sense, although they can have an influence on the transition. 

Let us choose one of the objects. Consider the conditional probabilityp(t, At) that 
this object will undergo the transition during the interval (t, t+At), if the transition 
has not occurred before the time t. Regarding this probability, we shall assume that 
for any t > O  there exists At>O such that the&, At), as a function of At, increases on 
(-At, At). This means that the object may undergo the transition into E ,  no matter 
how long it has been in A. Because of this assumption, for At+O the Taylor 
expansion of p(t, At) yields 

p(t, At) =P{A+B, AtIA-hB, r}=a(t)At +o(Ar) (1) ’ 
with a(t) >O for any t>O. 

The quantity a(?) is called the transition probability per unit time (Kolmogorov 
1931, Feller 1970). As follows from our consideration this quantity is, generally 
speaking, time dependent and is not necessarily equal for all objects under consider- 
ation. However, the unusual approach to the IST description includes (1) as apostulate 
(Kohogorov 1931, Bhmch-Reid 1960, Karlm 1968, Feller 1970, Rozanov 1979) and 
is restricted to the case a(t) = a = l / ( r )  = constant. This immediately gives the expo- 
nential evolutionary law for the probability p( t )  for each object to undergo the 
transition by the time t: 

p(t) = P{A+ E ,  f }  = 1 - exp( -at). (2) 
In the present work we eliminate this postulate to carry out a more general 

analysis. In particular, in the next section we elucidate what mathematical values a(?) 
depends on and deduce general rules for the calculation of this quantity. 

3. Basic mathematical analysis: a and (z) 

Consider the probability for a chosen object to remain in the stateA by the time t+ Ar 
PIA+ E ,  t + At} E 1 -p(t + At) = P{A+ B, At1A-k B, r}P{A-k B, t] 

- ~ ( t .  A N 1  -At)) 
i.e. 

p(t, At)= l-(l-p(t+At)(l-p(t))-’. (3) 
The right-hand side contains the total probabilities of the transition. Obviously, they 
depend only on time variables, t and At and on initial conditions assumed for the 
system at t = 0. Hence p ( t ,  At) in the left-hand side is a function of the same factors. In 
m, the value a(t) in (l), being a coefficient of the Taylor expansion for p( t ,  At) in 
terms of At,,depends on the time variable t and initial conditions. 

3.1. Rules for calcdarionS of a@) 
Let an arbitrary chosen object be in the state A at t = 0 and the probability of its 
transition to B be governed by a quantity a@), so tha (1) is satisfied. Assume that this 



5976 

object and its environment at f =O is completely characterized by sets of deterministic 
and stochastic parameters denoted as 5= {Cl, C2, . . . , f K }  and q = {ql, q2, . . . , qM}, 
respectively. The set q is distributed due to the total probability P(q' ,  t) of q being 
equal to q' at the time rand the conditional probability P(q' ,  tlq(0)) of q being equal 
to q' at the time t if at t = O  it has been equal q(0). The dynamic variable c((sa, f )  is 
defined by its time evolution and initial conditions & = C(0). 

Y A Berlin er a1 

Consider the conditional probability, 

p(f,At, 5,q) -P{A+B,  AtlG(f)=5, q ( t ) = q ; A - / + B , t } .  

Using Taylor expansion similar to that performed in section 2 one obtains 

At, At, 5, q) = T(C, rt, W +  (4) 

where 9 is a certain function. 
Due to the total probability formula, p ( t ,  At, c, q) and p(t, At) are related by 

~ ( t ,  At) = At, S ( k  rt)P(tl, th(0)) dtl. (5) I 
By substituting (4) into (5) and comparing the result with (1) one obtains 

a(O= 3(G(O,q. O P h  tltl(0)) drl (6) I 
where the integration over q is, generally speaking, implied in the Lebegue sense. 

Objects are identical if: 
Now one can mathematically define the 'identify' of objects under consideration. 

(i) their 9 functions have the same forms as well as definition ranges; 
(ii) their 5(&, t), as functions of two variables, coincide; 

(iii) fheir P(q, tlq(0)) distributions are the same together with probabilistic meas- 
ures d e h e d  for q. 

Note, however, that, the identity of objects i =  1,. . . , N does not imply that a% 
adopt equal values at a given t, since a(t) depends on the set of initial conditions {c(O), 
do)) which, in general, can vary from object to object. Moreover, as follows from (6), 
a(o(r) are composite functions o f t  due to the time dependence of the integrand. Thus 
it becomes obvious that expression (2) represents only a very special particular case of 
(6) with 9 =constant. 

Summing up, we come to the following rules for the calculation of the transition 
probability per unit time, a(& in IST processes of the general type. Starting with some 
initial physical model, one should account for all interactions between objects and 
external intluences in terms of r(To, t), q and p ( q ,  tlq(0)). The inhence of these 
factors on the IST process are expressed by the function 9(G, q, t). Finally, a(t) should 
be calculated by means of equation (6). 
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3.2. Average expectation time 

To derive (r) for a chosen object we consider the probability P{A-bB, t; A-tB, dt} 
of its transition within the time intekal ranging from t up to t+dr. This quantity 
constitutes the joint probability of two events, namely the survival of the object in the 
state A by the time r and its transition to the state B during the time interval (t, r + dt). 
By delinition of the conditional probability, one can write 

P{A-bB, r;A-+B, dt}=p(t, dt)P{A+B, t}. 

P{A+B, t; A+B, dr} = a(r)P{A+ B ,  t}.dt. 

(7) 

(8) 

Noting (1) and the differential order of smallness of dt, one obtains 

The probability P{A+B, t} can be found from (1) and (3) in the form 

P{A-bB, t}= exp ( - ,( a@) ds)  . (9) , 

Note that P{A - / + B ,  t ;  A - + &  dr} is the probability of the expectation time to be 
within the interval (e, t+dr). Therefore substituting (9) into (8) ,  multiplying the result 
by t and.haUy integrating over tone obtains 

After integrating (10) by parts we obtain 

where the lower integration limit represents the expectation startout moment which 
has been set at ro=O for the sake of convenience. 

Up to now we have been examining a single object undergoing I=. However, the 
solution of the majority of physical problems involving IST requires the estimation of 
statistical characteristics of the entire system. They are given by probabilities P,(t) of 
observing m = 1,2, . . . , N transitions A -+ B by the time t. In the next section we show 
how the results obtained above can be used for the calculation of P,(t). 

4. Description of the entire system 

One of the key problems for the mathematical consideration of the system with 
objects undergoing 1s-in particular, for the derivation of master equations and 
differential equations for P,(t)-is the estimation of the order of smallness of 
probabilities, Pk(t ,  At), of k transitions occurring (k> 1) during the time interval 
At+O. Therefore this section starts with the investigation of this item. After that we 
illustrate the exploitation of the approach developed by solving two model problems: 
the first concerns IST dynamics governed only by the set of deterministic parameters, 
5, while the second deals with IST evolution influenced only by the set of stochastic 
parameters, q. Their solutions yield expressions for P&) which completely d e h e  all 
statistical characteristics of the system. 
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4.1. Orders of smallness 

Let the system contain n S N  objects in the state A by a certain time t. Due to the 
above results their transition probabilities are given by 

Y A Berlin et al 

p‘Q(f, At) =a(”(f)At+ o(Af)  (12) 
where a(’l(t)= 0(1), i =  1.2, . . . , n. 

expressed using the total probability formula as follows 
The probability of any two transitions during the time interval Af+O can be 

” 
P2(f,  At)= [p(i, Atl,?(a”(t)At+o(At))]. (13) 

i J = l  
;+i 

Here&, Atlj, At) is the conditional probability of the transition of the object i during 
Af if the object j undergoes transition during the same time interval. Similarly to. 
p(t, Af) ,  the functionp(i, Aflj) increases with Af and hence its Taylor expansion in the 
vicinity of At=O provides 

p ( i ,  AtL]=y(t)At+o(At) (14) 
where a certain function y satisfies the condition y ( f )  = O(1). Combining (13) and (14) 
we have 

P&, At)=O(At’)=o(At). 
Similarly the estimation for any k > 1 yields 

Pk(f ,  At)=o(At),At+O foranyk>l.  (15) 
Usually the property (U) is postulated for systems which contain objects undergo- 

ing IST (Kolmogorov 1931, K a r h  1968, Feller 1970). Here it has been derived on the 
base of quite general assumptions discussed above. 

4.2. Example of IsTgouerned by a set of determinktic parameters 

As an example we consider the system with IST proceses affected by some ‘driving 
force’ which induces the same c(t) values for all objects undergoing transitions. 
Because of such an affection 

T‘QO) = T(C(Co7 0 )  

g p  = C“’(0) = 5p’ = . , . C p .  
where, obviously, 

Then (6) provides 
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To derive differential equations for P,,,(t) let us consider the conditional probabili- 
ties, P&, t, Ar), of k= 0, 1, . . . , N- m transitions occurring in the system during the 
time interval At-0 if m transitions have proceeded during the time interval t before 
At. Since the probabilities of k> 1 transitions occurring have the order of smallness 
o(At) (see subsection 4.1), one obtains 

Po(m, f, At) = 1 - Pl(m, t ,  At) + o(At) 

N-m 

P,(m, t, Af)= 

P,(m, t, At)=o(At) V k > l  

p'$(t, Ar)+o(At)= w,,,(t)At+o(At) 
,=I  

where 

w,,,(t) = ( N -  m)a(t) (19) ' 

with a(t) &en by (16). 

occurring during the time interval t + At, we have 
Using the total probability formula for the probability, Pm(t+ At), of m transitions 

Pm(f+At)=Pm(t)Po(m,t, Af)+Pm-,(t)P1(m,t, At) 
m +E P,-,{t)P,(k, t, At). 

i=2 

Substituting (U) into (20) and setting At+O, we derive differential equations for 
Pm(t) as follows: 

For initial conditions 

P,(O) = 1 and Pm(0) = 0 for any m > 0 

the solution to (21) is given by 

where 

and 

with a(t) given by (16). 
The derivation of statistical characteristics of the system under consideration, i.e. 
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the moments of the distribution P,,,(t), is straightforward. For example, from (22)- 
(24), the average, (m(t))=ZmP,(t), can be written as 

Y A Berlin et al 

(m(t))=Np(t)=N (1 - exp (-[a(.) dr)) (as) 

while for the dispersion D ( t ) - c  (m*-(m(t))*)P,(t) one obtains 

D ( f )  = N (1 -exp ( - a(r) dr) ) exp( - 1: a(.) dr) . (26) 

Finally we note that the expression for the average lifetime of an object in the state 
A is defined by (11) with a given by (16). Namely 

being the same for all objects of the system. 

4.3. Example of an IST governed by a set of stochaitic parameters 

Now we turn to another model situation when the system contains N identical and 
statistically independent obje&s, each being characterized by an internal stochastic 
process, so that (4) and (6) for ith object reduce to 

C,tl)=p(t, At,tl)=T(tl ,Wfo(At) (28) 

respectively. 

terms of 5. This implies the introduction of probability distributions defined by 
For further analysis it is convenient to describe internal stochastic processes in 

+(T, t)'P{T(t)=Fl= dtlo T(% OP(tl, tItlo)P(tl) dtl (30) I 'I 
and 

p(CTo,F, t)  =P{T(q, t)'915(0) =5J 

= J drlo J ~ ( t l ,  ~ ( t l ,  tltlo)P(tlo) dtl. (31) 
s(m)=so scl)=s 

Obviously, since objects are identical, their distributions p and q5 are the same, 
while initial conditions T(0) are, generally speaking, different. Such a difference can 
be explicated by rewriting (29) for an ith object with FCq(O) = 9b' as 

a"(t) = 9p( f l ) ,  9, t )  d9.  (32) I 
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Taking into account (28)-(32) it is easy to show that for this object the conditional 
probability, p&At), of the transition during the interval At+O if it has not 
undergone the transition by the time t before At is given by 

Pso(t,At)=At Tp(To,T,t)dT+o(At). (33) J 
Following the total probability formula, one can write the probability, ps,(t + At), 

of the transition during the time t+  At as follows 

pso(t + At) =P(A+B, t +  At} = P(A+B, t] 

+p,(t, At)P{A - I+ B ,  t} 

The substitution of (33) into (34) yields 

or 

In the limit At-0 the latter expression provides the differential equation as follows 

J -- apso(t)- (1 -pso(t)) Tp(To, 0 ,  T, t )  dT. 
at 

The solution of (35) is given by 

(35) 
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To evaluate statistical characteristics of the entire system one should take into 
account all N objects with random initial conditions T‘fl(0) = Tg’ distributed due to 
P(5b1), . . . , F&M), with upper indexes numbering objects. By virtue of the statistical 
independence of objects one obtains 

and 

P ( .  . . , @I, . . . , Tb’, . . .) = P ( .  . . , Tb’, . . . , Tk’, . . .) 

N 

P(F!,’), . . . , T!,“?) = fl $(Tt’, 0). 
i=l 

Therefore due to the total probability formula we have 

x P(Y&’), . . . , FAw) dTt)  . . . dThw 

Combining (36) and (37) one tinally obtains 
P&) = C;(p(t))-(l - p ( t ) ) N - W  

where 

p(t) = [ 1 - exp ( - I’, ~(Fo,  3, W d T  @(YO, 0) dF0. (39) 

As seen from the form of (38) (cf. (22)), expressions for (m(t)), D( t )  and other 
moments formally coincide with those obtained in the previous subsection (see (25’) 
and (26)) with p(r) replaced byp(t)). 

To complete the description we derive the expression for the average lifetime in 
the state A for an object characterized by F(0) = FG This can be done by substituting 
(32) into (ll), which yields 

11 

varying from object to object. 

4.4. Commenrs on examples 
As has already been mentioned above, the expression for P,(f)  obtained for the 
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example of a system with IST governed by a set of stochastic parameters formally 
coincides with that for the example of the system with IST governed by a set of 
deterministic parameters, if one replacesp(t) byp(t) (cf. (22) and (38)). It should be 
noted that the conventional approach (Feller 1970) also provides P,,,(t) defined by 
(22), but withp(t) given by (2). 

However, the meanings of quantitiesp(t) andp(f) are quite different. The former 
is the probability of the transition A + B  of a single object while the latter describes 
the behaviour of the whole system and cannot be attributed to any chosen object. 
Such a difference is due to distinct natures of the systems considered. 

Nevertheless, as follows from (39). p(r)  possesses all the mathematical properties 
of probability referred to some imaginary 'averaged' object, although such an object 
does not exist in reality. Moreover, the introduction of such an 'averaged' object does 
not at all lead to the replacement of a in (2) by some average value, (T), of the 
transition probability per unit time 

(q = T@(T, f) dT. 1 
Thus the only common feature of the two quantitiesp(t) andp(f) is their equality 

to the ratio of the average number of objects in the state B at time t to the total 
number of objectsin the system. 

Another point to be discussed concerns the average transition expectation time. 
For the case described in subsection 4.2 we have found (z) equal for all objects of the 
system (equation (27)). The opposite situation is observed for the system with 
stochastic IST parameters (subsection 4.3, equation (40)). In the latter case the 
dependence of (z) on To may tend one to average ( T ) ~ ~  over the distribution @(To, 0). 
The result of t h i s  procedure yields the average transition expectation time reckoned 
from some initial t = O  for an object to be arbitrarily chosen at this time instant. 
However, this quantity 

Tp(To,T,s )dT dtdTo (41) 

is not related to the statistical characteristics of the entire system as follows from (38) 
and (39), which do not contain (5) defined by (41). On the other hand, it is not related 
to characteristics of a single object either, since objects have different values of 
average expectation times, (z).+, due 'to the random difference in initial conditions, 
90. 

5. Conclusions 

We have carried out a general analysis of IST processes which is free from the not-so- 
obvious qualitative assumptions of conventional approaches. This analysis is based on 
strict mathematical introduction of the transition probability per unit time, a. Our 
analysis does not refer to the concrete nature of A+B stochastic transitions and 
therefore makes the IST description free from separation of Markovian and non- 
Markovian processes. On 'the other hand, our approach allows a to be calculated for 
each concrete physical problem. 

It has been shown that in the general case a depends on time and on initial 
conditions for an object undergoing IST, while the conventional approach implies 



5984 

a=constant. The latter simple equality is a special particular case of (6), when 
c(t) = constant P(q,  tlq(0)) = S(q - q(0)) and q(0) is k e d .  Such conditions mean that 
one neglects the influence of interactions between objects and external impacts on the 
probability of transitions. 

On the contrary, our formalism offers rules for the calculation of a having regard 
to these factors (equation (4)-(6)). This makes it possible to evaluate the statistical 
characteristics of transitions. In particular, general expressions for the transition 
probability and for the average expectation time, (z), have been obtained. Our results 
show that, in contrast to the conventional formalism, the IST kinetics is not obliged to 
be exponential (see (22)-(24) and (38), (39)). In addition, (z) is found to be governed 
by the time dependence of a and hence by the expectation startout moment, f,, ((ll), 
(27) and (40)). 

The advantage of the basic expressions (4)-(6) and (11) is that they are exact and 
universal. This allows one to use them for the evaluation of statistical characteristics of 
various complex systems containing objects undergoing IST. Such a possibility has 
been demonstrated in section 4. 

The approach developed opens the way to account for and analyse many essential 
features of systems demonstrating IST processes. Thus these considerations can enrich 
the physical picture of IST and seems to be useful for broadening insight into the 
kinetics of complex physical and chemical systems.as well as systems of some other 
nature. 

Y A Berlin et a1 
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